500 MILLION PARTS FROM 12000 MANUFACTURERS
TCA5600/D TCA5600 TCF5600 BD242SP MR752 MR2525L - Datasheet Archive
TCA5600 TCF5600 Universal Microprocessor Power Supply/Controllers The TCA5600, TCF5600 are versatile power supply control
Order this document by TCA5600/D TCA5600/D TCA5600 TCA5600 TCF5600 TCF5600 Universal Microprocessor Power Supply/Controllers The TCA5600 TCA5600, TCF5600 TCF5600 are versatile power supply control circuits for microprocessor based systems and are mainly intended for automotive applications and battery powered instruments. To cover a wide range of applications, the devices offer high circuit flexibility with a minimum of external components. Functions included in this IC are a temperature compensated voltage reference, onchip dc/dc converter, programmable and remote controlled voltage regulator, fixed 5.0 V supply voltage regulator with external PNP power device, undervoltage detection circuit, poweron RESET delay and watchdog feature for safe and hazard free microprocessor operations. · 6.0 V to 30 V Operation Range · · · · · · · · · · UNIVERSAL MICROPROCESSOR POWER SUPPLY/CONTROLLERS SEMICONDUCTOR TECHNICAL DATA 2.5 V Reference Voltage Accessible for Other Tasks Fixed 5.0 V ± 4% Microprocessor Supply Regulator Including Current Limitation, Overvoltage Protection and Undervoltage Monitor. Programmable 6.0 V to 30 V Voltage Regulator Exhibiting High Peak Current (150mA), Current Limiting and Thermal Protection. Two Remote Inputs to Select the Regulator's Operation Mode: OFF = 5.0 V, 5.0 V Standby Programmable Output Voltage SelfContained dc/dc Converter Fully Controlled by the Programmable Regulator to Guarantee Safe Operation Under All Working Conditions Programmable PowerOn RESET Delay 18 1 PLASTIC PACKAGE CASE 707 Watchdog Select Input PIN CONNECTIONS Negative Edge Triggered Watchdog Input Low Current Consumption in the VCC1 Standby Mode RESET 1 18 WDS Vout1 Sense 2 17 Delay VCC1 3 16 Iout1 Sense High Voltage Crystal and Plasma Displays WDI 4 15 Base Drive Decentralized Power Supplies in Computer Telecom Systems Vref 5 14 VCC2 INH1 6 13 GND Vout2 Prog 7 12 Current Sense Vout2 Output 8 11 INH2 Converter Output 9 10 Converter Input All Digital Control Ports are TTL and MOSCompatible Applications Include: · · · Microprocessor Systems with E2PROMs (Top View) RECOMMENDED OPERATING CONDITIONS Characteristics Power Supply Voltage Collector Current Symbol Min Max Unit VCC1 VCC2 5.0 5.5 30 30 V IC - 800 mA Vout2 6.0 30 V Device Iref 0 2.0 mA ORDERING INFORMATION Reference Source Current Operating Temperature Range Package TCA5600 TCA5600 TJ = 0° to +125°C Plastic DIP TCF5600 TCF5600 Output Voltage TJ = 40° to +150°C Plastic DIP © Motorola, Inc. 1996 MOTOROLA ANALOG IC DEVICE DATA Rev 0 1 TCA5600 TCA5600 TCF5600 TCF5600 MAXIMUM RATINGS (TA = +25°C [Note 1], unless otherwise noted.) Rating Symbol Value Unit VCC1, VCC2 35 Vdc Base Drive Current (Pin 15) IB 20 mA Collector Current (Pin 10) IC 1.0 A Forward Rectifier Current (Pin 10 to Pin 9) IF 1.0 A Logic Inputs INH1, INH2, WDS (Pin 6, 11, 18) VINP 0.3 V to VCC1 Vdc Logic Input Current WDI (Pin 4) IWDI ±0.5 mA Output Sink Current RESET (Pin 1) IRES 10 mA 0.3 to 10 0.3 to 5.0 V 5.0 mA Power Supply Voltage (Pin 3,14) Analog Inputs (Pin 2) Analog Inputs (Pin 7) Reference Source Current (Pin 5) Iref Power Dissipation (Note 2) TA = +75°C TCA5600 TCA5600 TA = +85°C TCF5600 TCF5600 PD mW 500 650 RJA Thermal Resistance, JunctiontoAir Operating Ambient Temperature Range TCA5600 TCA5600 TCF5600 TCF5600 °C TA Operating Junction Temperature Range TCA5600 TCA5600 TCF5600 TCF5600 °C/W 100 TJ 0 to +75 40 to +85 °C +125 +150 Storage Temperature Range Tstg 65 to +150 °C NOTES: 1. Values beyond which damage may occur. 2. Derate at 10 mW/°C for junction temperature above +75°C (TCA5600 TCA5600). Derate at 10 mW/°C for junction temperature above +85°C (TCF5600 TCF5600). 12 8 DC/DC Converter Inhibit 2 11 (INH2) 14 Current Sense 7 Supply Voltage V CC2 Regulator Vout2 9 V out2 Programming 10 Current Sense Converter Output Converter Input Representative Block Diagram 16 Current Limit A2 Voltage Protection Inhibit 1 6 (INH1) A1 15 2 Supply Voltage VCC1 3 Reference 2.5V Thermal ShutDown PNP Base Drive Vout1 Sense A1 1 Delay Circuit Watchdog Comp. II Comp. I 2 5 13 Gnd 4 WDI 18 WDS Delay 17 Vref RESET MOTOROLA ANALOG IC DEVICE DATA TCA5600 TCA5600 TCF5600 TCF5600 ELECTRICAL CHARACTERISTICS (VCC1 = VCC2 = 12 V; TJ = 25°C; Iref = 0; Iout1 = 0 [Note 3]; RSC = 0.5 ; INH = High INH2 = High; WDS = High; Iout2 = 0 [Note 4]; unless otherwise noted.) Characteristics Figure Symbol Min Typ Max Unit 1 Vref nom 2.42 2.5 2.58 V Vref 2.4 - 2.6 V Regline - 2.0 15 mV REFERENCE SECTION Nominal Reference Voltage Reference Voltage Iref = 0.5 mA, Tlow TJ Thigh (Note 5), 6.0 V VCC1 18 V Line Regulation (6.0 V VCC2 18 V) Average Temperature Coefficient Tlow TJ Thigh (Note 5) 2 Vref TJ - - ± 0.5 mV/°C Ripple Rejection Ratio f = 1.0 kHz, Vsin = 1.0 Vpp 3 RR 60 70 - dB ZO - 1.0 - ICC1 - 3.0 - mA Vout1(nom) 4.8 5.0 5.2 V Vout1 4.75 - 5.25 V Line Regulation (6.0 V VCC2 18 V) Regline - 10 50 mV Load Regulation (5.0 mA Iout1 300 mA) Regload - 20 100 mV IB 10 15 - mA Output Impedance 0 Iref 2.0 mA Standby Current Consumption VCC2 = Open 4 5.0 V MICROPROCESSOR VOLTAGE REGULATOR SECTION Nominal Output Voltage Output Voltage 5.0 mA Iout1 300 mA, Tlow TJ Thigh (Note 5) 6.0 V VCC2 18 V 5 6 Base Current Drive (VCC2 = 6.0 V, V15 = 4.0 V) Ripple Rejection Ratio f = 1.0 kHz, Vsin = 1.0 Vpp 3 RR 50 65 - dB Undervoltage Detection Level (RSC = 5.0 ) 7 Vlow 4.5 0.93 × Vout1 - V Current Limitation Threshold (RSC = 5.0 ) VRSC 210 250 290 mV Average Temperature Coefficient Tlow TJ Thigh (Note 5) Vout1 TJ - - ±1.0 mV/°C DC/DC CONVERTER SECTION Collector Current Detection Level High RC = 10 k Low 9 V12(H) V12(L) 350 - 400 50 450 - mV Collector Saturation Voltage IC = 600 mA (Note 6) 10 VCE(sat) - - 1.6 V Rectifier Forward Voltage Drop IF = 600 mA (Note 6) 11 VF - - 1.4 V NOTES: 3. The external PNP power transistor satisfies the following minimum specifications: hFE 60 at IC = 500 mA and VCE = 5.0 V; VCE(sat) 300 mV at IB = 10 mA and IC = 300 mA 4. Regulator Vout2 programmed for nominal 24 V output by means of R4, R5 (see Figure 1). 5. Tlow = 0°C for TCA5600 TCA5600 Tlow = 40°C for TCF5600 TCF5600 Thigh = +125°C for TCA5600 TCA5600 Thigh = +150°C for TCF5600 TCF5600 6. Pulse tested tp 300 µs. MOTOROLA ANALOG IC DEVICE DATA 3 TCA5600 TCA5600 TCF5600 TCF5600 ELECTRICAL CHARACTERISTICS (VCC1 = VCC2 = 12 V; TJ = 25°C; Iref = 0; Iout1 = 0 [Note 3]; RSC = 0.5 ; INH = High ELECTRICAL CHARACTERISTICS INH2 = High; WDS = High; Iout2 = 0 [Note 4]; unless otherwise noted.) Characteristics Symbol Min Typ Max Unit Vout2(nom) 23 24 25 V Vout2 22.8 - 25.2 V Regload - 40 200 mV Iout2 100 - - mA Iout2 p 150 200 - mA RR 45 55 - dB Vout2(5.0 V) 4.75 - 5.25 V Rout1 - 10 - k Vout2 TJVout2 - - ±0.25 mV/°C V VC5(H) VC5(L) - - 2.5 1.0 - - V 1.8 - - 2.5 5×IC5 50×IC5 3.2 - - VWDI - - ±5.5 V Watchdog Input Impedance ri 12 15 - k Watchdog Reset Pulse Width (C8 = 1.0 nF) (Note 9) tp - - 10 µs VINP - - 0.3 to VCC1 V - - - - 100 150 - - 100 PROGRAMMABLE VOLTAGE REGULATOR SECTION (Note 6) Nominal Output Voltage Output Voltage (Figure 8) 1.0 mA Iout2 100 mA, Tlow TJ Thigh (Notes 5, 7) Load Regulation 1.0 mA Iout2 100 mA (Note 7) DC Output Current Peak Output Current (Internally Limited) Ripple Rejection Ratio f = 20 kHz, V = 0.4 Vpp Output Voltage (Fixed 5.0 V) 1.0 mA Iout2 20 mA, Tlow TJ Thigh INH1 = HIGH (Note 5) Off State Output Impedance (INH2 = Low) Average Temperature Coefficient Tlow TJ Thigh (Note 5) WATCHDOG AND RESET CIRCUIT SECTION Threshold Voltage (Static) High Low Current Source Tlow TJ Thigh (Note 5) PowerUp RESET Watchdog Time Out Watchdog RESET Watchdog Input Voltage Swing µA IC5 DIGITAL PORTS: WDS, INH 1, INH 2, RESET (Note 8) Input Voltage Range µA Input High Current 2.0 V VIH 5.5 V 5.5 V VIH VCC1 IIH Input Low Current 0.3 V VIL 0.8 V for INH1, INH2, 0.3 V VIL 0.4 V for WDS IIL Leakage Current Immunity (INH2, High "Z" State) (Figure 12) IZ ±20 - - µA Output Low Voltage RESET (IOL = 6.0 mA) VOL - - 0.4 V Output High Voltage RESET (VOH = 5.5 V) VOH - - 20 µA µA NOTES: 3. The external PNP power transistor satisfies the following minimum specifications: hFE 60 at IC = 500 mA and VCE = 5.0 V; VCE(sat) 300 mV at IB = 10 mA and IC = 300 mA 4. Regulator Vout2 programmed for nominal 24 V output by means of R4, R5 (see Figure 1). 5. Tlow = 0°C for TCA5600 TCA5600 Tlow = 40°C for TCF5600 TCF5600 Thigh = +125°C for TCA5600 TCA5600 Thigh = +150°C for TCF5600 TCF5600 6. V9 = 28 V, INH1 = LOW for this Electrical Characteristic section unless otherwise noted. 7. Pulse tested tp 300 µs. 8. Temperature range Tlow TJ Thigh applies to this Electrical Characteristics section. 9. For test purposes, a negative pulse is applied to Pin 4 (2.5 V V4 5.5 V). 4 MOTOROLA ANALOG IC DEVICE DATA TCA5600 TCA5600 TCF5600 TCF5600 V ref nom , REFERENCE VOLTAGE (V) Figure 1. Reference Voltage versus Supply Voltage 2.4 2.0 RSC 0.5 NC VCC1 6 + 11 18 9 10 14 3 1.6 NC Q1 BD242SP BD242SP 15 12 NC 1.2 16 4 17 13 8 7 1 2 5 Vout1 0.8 NC 0.4 0 1.0 NC R4 86k Vout2 10µF C4 Vref nom R5 10k 2.0 3.0 4.0 5.0 10 20 30 40 VCC1, SUPPLY VOLTAGE (V) + Figure 2. Reference Stability versus Temperature TCA5600 TCA5600 V ref , VOLTAGE DRIFT (mV) 60 40 6 + 20 13 8 NC 0 25 50 75 100 TJ, JUNCTION TEMPERATURE (°C) 125 7 14 16 Q1 BD242SP BD242SP 1 2 Vout1 + 10µF Vref R5 10k 150 5 NC R4 86k Vout2 TCF5600 TCF5600 25 9 15 17 60 10 4 40 50 18 12 NC 20 11 3 NC +0 RSC 0.5 NC VCC1 C4 + Vref nom Figure 3. Ripple Rejection versus Frequency RR, RIPPLE REJECTION RATIO (dB) = 1.0 VPP 70 0.33µF Vref 60 50 Vout1 40 VCC1 20 11 10 k 100 k f,FREQUENCY (Hz) MOTOROLA ANALOG IC DEVICE DATA 1.0 M 10 9 14 NC 16 Q1 BD242SP BD242SP 15 12 4 17 13 Vout2 0 18 3 NC 10 1.0 k 6 NC 30 RSC 0.5 NC C6 R3 + 150 8 7 R4 86k R5 10k 5 1 2 NC Vout1 + 10µF C4 Vref nom 5 TCA5600 TCA5600 TCF5600 TCF5600 ICC1 , STANDBY CURRENT (mA) Figure 4. Standby Current versus Supply Voltage 6 VCC1 ICC1 5 6 + 11 18 NC 9 14 16 Q1 BD242SP BD242SP 15 12 NC 3 4 17 2 13 8 NC 1 0 7 1 2 5 NC R4 86k Vout2 2.0 10 3 4 1.0 RSC 0.5 NC 10µF C4 Vref R5 10k 3.0 4.0 5.0 10 20 30 40 VCC1, SUPPLY VOLTAGE (IV) Vout1 + Figure 5. PowerUp Behavior of the 5.0 V Regulator V out1 , OUTPUT VOLTAGE (V) 6 5 4 6 + Iout = 300 mA 11 18 NC 9 14 16 Q1 BD242SP BD242SP 15 12 NC 4 17 2 13 8 NC 1 0 7 5 R4 86k Vout2 2.0 10 3 3 1.0 RSC 0.5 NC VCC1 Vref R5 10k 3.0 4.0 5.0 10 20 30 40 VCC2, SUPPLY VOLTAGE (IV) 1 2 Iout1 NC 16.7 Rout1 Vout1 + C4 10µF Figure 6. Foldback Characteristics of the 5.0 V Regulator V CC2 , SUPPLY VOLTAGE (V) 7.0 6 + 5.0 RSC 0.5 NC VCC1 6.0 11 18 10 9 3 4.0 NC 12 3.0 NC 14 16 Q1 BD242SP BD242SP 4 2.0 28 V 24 V 1.0 VCC1 + 13 NC Vout2 0 0 6 17 VCC2 20 V 15 100 200 300 400 500 600 Iout1, OUTPUT CURRENT (mA) 8 7 5 NC Rout1 R4 86k R5 10k 1 2 Iout1 100 Vout1 + C4 10µF Vref MOTOROLA ANALOG IC DEVICE DATA TCA5600 TCA5600 TCF5600 TCF5600 Figure 7. Undervoltage Lockout Characteristics V RES , RESET VOLTAGE (V) 7 6 6 + 11 18 NC 3 13 8 NC 1 0 5.0 6.0 7.0 7 1 2 Vout1 + C4 10µF 10k Vref RESET R5 10k 8.0 5 R6 R4 86k Vout2 4.0 Q1 BD242SP BD242SP 4 2 3.0 16 15 17 2.0 14 12 NC 4 1.0 9 10 3 5 0 RSC 0.5 NC VCC1 Vout1, OUTPUT VOLTAGE (V) Figure 8. Output Current Capability of the Programming Regulator V g , SUPPLY VOLTAGE (V) 28 RSC 0.5 NC 24 6 + 20 V9 16 11 18 NC 12 + 8.0 NC 0 140 17 13 8 NC Rout2 5.0k 160 16 Q1 BD242SP BD242SP 15 7 5 Vout1 + 10µF C4 Vref R5 10k C3 47nF 1 2 NC R4 86k Iout2 40 60 80 100 120 Iout2, OUTPUT CURRENT (mA) 14 4 4.0 20 9 12 VCC1 0 10 3 V 10, COLLECTOR VOLTAGE (V) Figure 9. Collector Current Detection Level 16 6 + 12 VCC1 NC 8.0 3 V12(L) V12(H) V12 0 100 200 300 400 V12, CURRENT SENSE VOLTAGE (mV) MOTOROLA ANALOG IC DEVICE DATA 500 14 16 Q1 BD242SP BD242SP 4 13 NC Vout2 0 RSC 0.5 15 12 17 4.0 11 10k RC V10 18 10 9 8 7 5 NC R4 86k R5 10k 1 2 Vout1 + 10µF C4 Vref 7 TCA5600 TCA5600 TCF5600 TCF5600 Figure 10. Power Switch Characteristics VCE(sat), SATURATION VOLTAGE (V) IC10 1.8 RSC 0.5 1.6 1.4 6 VCC1 + 11 1.0 NC 13 8 7 NC 50 80 100 200 300 500 14 16 Q1 BD242SP BD242SP 15 17 30 9 4 0.8 20 10 3 12 1.2 0.6 10 18 IC10, COLLECTOR CURRENT (mA) Vout1 + NC R4 86k Vout2 800 1 2 5 10µF C4 Vref R5 10k Figure 11. Rectifier Characteristics IF VF, FORWARD VOLTAGE (V) 1.8 RSC 0.5 1.6 1.4 6 VCC1 + 11 NC 16 Q1 BD242SP BD242SP 15 17 13 8 7 NC 50 80 100 200 300 IF, RECTIFIER CURRENT (mA) 14 4 0.8 30 9 12 NC 1.0 20 10 3 1.2 0.6 10 18 Vout1 + NC R4 86k Vout2 500 800 1 2 5 10µF C4 Vref R5 10k Vout2 , OUTPUT VOLTAGE (V) Figure 12. INH 2 Leakage Current Immunity 28 10k V10 Vout2 24 20 16 Spec Limits 12 High "Z" State NC IZ 8 V10 30 20 10 0 10 20 IZ, LEAKAGE CURRENT (µA) 30 40 18 10 9 14 13 NC Vout2 C3 47nF 8 7 5 Q1 BD242SP BD242SP R5 10k 1 2 NC R4 86k Vg 16 15 4 17 4.0 11 RSC 0.5 3 12 VCC1 8.0 0 40 6 + RC Vout1 + 10µF C4 Vref MOTOROLA ANALOG IC DEVICE DATA TCA5600 TCA5600 TCF5600 TCF5600 APPLICATIONS INFORMATION (See Figure 18) VCC2 Coil Current ILpeak VL + Coil Voltage VL DC/DC Converter The dc/dc converter performs according to the flyback principle and does not need a time base circuit. The maximum coil current is well defined by means of the current sensing resistor R1 under all working conditions (startup phase, circuit overload, wide supply voltage range and extreme load current change). Figure 13 shows the Simplified Converter Schematic. Figure 14. Voltage and Current Waveform on the Coil (not to scale) ÉÉÉÉ É ÉÉÉÉ É ÉÉ ÉÉ Voltage Reference (Vref) The voltage reference Vref is based upon a highly stable bandgap voltage reference and is accessible on Pin 5 for additional tasks. This circuit part has its own supply connection on Pin 3 and is, therefore, able to operate in standby mode. The RC network R3, C6 improves the ripple rejection on both regulators. t t t1 t2 Figure 13. Simplified Converter Schematic The coil charging time t1 is found using Equation (4): VCC2 L1 300µH Control Feedback V12(H) V12(L) + t1 = 10 VF Comp Prog. Regulator VCE(sat) C2 12 9 Vout2 8 7 R4 85K R5 10k + 100 µF C3 47nF (4) [f : minimum oscillation frequency which should be chosen above the audio frequency band (e.g. 20 kHz)] Knowing the dc output current Iout2 of the programmable regulator, the peak coil current IL(peak) can now be calculated: IL(peak) = 2 (Iout2) (1 + ) C7 0.22µF R1 0.68 1 1 (1 + ) f (5) The coil inductance L1 of the nonsaturated coil is given by Equation (6): A simplified method on "how to calculate the coil inductance" is given below. The operation point at minimum supply voltage (VCC2) and max. output current (Iout2) for a fixed output voltage (Vout2) determines the coil data. Figure 14 shows the typical voltage and current waveforms on the coil L1 (coil losses neglected). Equations (1) and (2) yield the respective coil voltage VL and VL + (see Figure 14): VL+ = Vout2 + V(Pin 9 Pin 8) + VF VCC2 VL = VCC2 VCE(sat) V12(H) (1) (2) [V(Pin 9 Pin 8): input/output voltage drop of the regulator, 2.5 V typical] L1 = t1 (VL) IL(peak) (6) The formula (6a) yields the current sensing resistor R1 for a defined peak coil current IL(peak): R1 = V12(H) IL(peak) (6a) In order to limit the bypass current through capacitor C7 during the energy dumping phase the value C2>>C7 should be implemented. For all other operation conditions, the feedback signal from the programmable voltage regulator controls the activity of the converter. [VF, VCE(sat), V12(H): see Electrical Characteristics Table] The time ratio for the charging time to dumping time is defined by Equation (3): = t1 VL+ = t2 VL MOTOROLA ANALOG IC DEVICE DATA (3) 9 TCA5600 TCA5600 TCF5600 TCF5600 Programmable Voltage Regulator This series voltage regulator is programmable by the voltage divider R4, R5 for a nominal output voltage of 6.0 V Vout2 30 V. (Vout2 Vref nom) · R5 Vref nom [R5 = 10 k, Vref nom = 2.5 V] R4 = (7) Current limitation and thermal shutdown capability are standard features of this regulator. The voltage drop V(Pin 9 Pin 8) across the series pass transistor generates the feedback signal to control the dc/dc converter (see Figure 13). Control Inputs INH1, INH2 The dc/dc converter and/or the regulator Vout2 are remote controllable through the TTL, MOS compatible inhibit inputs INH1 and INH2 where the latter is a threelevel detector (Logic "0", High Impedance "Z", Logic "1"). Both inputs are setup to provide the following truth table: Figure 15. INH1, INH2 TruthTable Mode ON: OFF: INH2 Vout2 0 0 0 1 1 1 0 High "Z" 1 0 High "Z" 1 OFF Vout2 Vout2 OFF 5.0 V 5.0 V INT ON INT INT ON INT Intermittent operation of the converter means that the converter operates only if VCC2